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ABSTRACT

Forced alignment, a technique for aligning segment-
level annotations with audio recordings, is a valu-
able tool for phonetic analysis. While forced align-
ment has great promise for phonetic fieldwork and
language documentation, training a functional, cus-
tom forced alignment model requires at least sev-
eral hours of accurately transcribed audio in the tar-
get language—something which is not always avail-
able in language documentation contexts. We ex-
plore a technique for model training which sidesteps
this limitation by pooling smaller quantities of data
from genetically-related languages to train a forced
aligner. Using data from two Mayan languages,
we show that this technique produces an effective
forced alignment system even with relatively small
amounts of data. We also discuss factors which af-
fect the accuracy of training on mixed data sets of
this type, and provide some recommendations about
how to balance data from pooled languages.

Keywords: forced alignment, field phonetics, small
data, representativeness, Mayan languages

1. INTRODUCTION

The transcription and annotation of field recordings
pose major logistical challenges for phonetic field-
work. The effort required to annotate many hours
of acoustic data can be prohibitive, and as a result
fieldworkers often collect far more data than they
ever fully annotate or transcribe. The recent de-
velopment of accessible forced alignment tools for
linguistics has helped reduce the severity of this
problem. Forced alignment is a computational tech-
nique which can be used to semi-automatically time-
align phonetic transcriptions with associated audio
recordings, at both the word and phone levels [11].
Though extremely promising, forced alignment is
not always practical for languages which are rela-
tively under-documented [5]. Training an accurate
forced alignment model typically requires at least
several hours of recorded and transcribed data. In-
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deed, most forced aligners for majority languages
like English have been trained on hundreds or even
thousands of hours of transcribed data—resources
which will likely never be available for most minor-
ity languages.

How, then, can forced alignment be exploited for
under-documented languages? One approach is to
apply models trained on majority languages (e.g.
English) to the target language (‘cross-language
forced alignment’, CLFA). This approach raises sev-
eral challenges. First, the researchers must decide
which existing language model should be used for
alignment. Second, researchers must decide how to
map the phones of the target language to phones in
the majority language which the alignment model
was trained on. Given the high researcher degree
of freedom involved, it is perhaps unsurprising that
the overall performance of CLFA varies consider-
ably across studies and parameters [5, 11-13, 16].

A different approach is to train a model directly
on the target language, using existing transcrip-
tions (language-specific forced alignment, LSFA).
This approach has been especially facilitated by
two forced aligners: the Prosodylab-Aligner (PLA)
[8], and the Montreal Forced Aligner (MFA) [14].
PLA in particular has been used to produce time-
aligned transcriptions for a number of minority lan-
guages [11]. This approach has advantages over
CLFA: there are fewer researcher degrees of free-
dom; language-specific alignment models produce
better alignment quality; and models can be further
refined as more data is collected and transcribed.
Nonetheless, LSFA does not overcome the central
problem that large sets of transcribed recordings are
simply unavailable for most languages.

In this study, we employed a method which uses
LSFA to train alignment models on mixed data from
two phonetically-similar and genetically-related lan-
guages. This approach combines strengths of both
CLFA and LSFA: we harness data from a non-
target language (henceforth NTL) to improve align-
ment, but we train a model for the target language
(henceforth TL) specifically, which can be updated



as more data is collected. We illustrate this approach
with two languages from the K’ichean branch of the
Mayan family, Kaqchikel and Uspanteko [3]. Pre-
vious work suggests that alignment models trained
on multiple languages improve when the languages
in the training set are genetically similar [9]. Using
genetically similar languages also simplifies the pro-
cess of mapping phones between languages [5], as
Kagqchikel and Uspanteko have very similar phono-
logical and phonetic inventories.

We focus on two issues here. First, we explore
in detail how additional NTL data might benefit the
alignment of a TL, and consider the limitations of
this approach. Second, we ask whether the kind
of NTL data used for model training might affect
how well the model ultimately aligns TL data. We
investigate these questions by manipulating (i) the
amount of TL and NTL data used to train alignment
models (Exp. 1), and (ii) the representativeness of
NTL data used in model training (Exp. 2).

2. METHOD

We used the MFA forced aligner (v1) for this study
because it has some advantages over PLA, e.g. us-
ing triphone windows to capture context-dependent
acoustic variability for each phone. The PLA aligner
should also produce similar results, as it shares an
underlying architecture with the MFA aligner.

All of the default MFA parameters were used in
this study. Preliminary testing showed that training
speaker-specific alignment models with MFA con-
sistently improved alignment quality [15, 18]. To
ensure the robustness of our results, for each model
specification, five sets of training data were gener-
ated by random sampling from our full data set. The
results from the five models were then averaged.

2.1. Acoustic and alignment data

Our target language (TL) was Kaqchikel, and
our non-target language (NTL) Uspanteko. The
Kagqchikel data consists of spontaneous monologues
from 16 speakers, recorded in Solold, Guatemala in
2013. These recordings include ~32,000 phones.
A random subset of these (~4,500 phones, drawn
roughly equally from all 16 speakers) was aligned
using the PLA and then hand-corrected. These hand-
corrected alignments serve as the gold-standard to
which we compare the alignments generated by our
alignment models. The Uspanteko data consists of
sentences elicited from 10 speakers in 2017. These
recordings include ~13,000 phones.
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2.2. Manipulation: Sample size

We manipulated the amount of TL and NTL data in
the input to model training by varying the number
of phones included from each language (= 0, 500,
1000, 2000, 4000, or 8000 phones).

2.3. Manipulation: Sampling with representativeness

We define the ‘representativeness’ of an NTL sam-
ple in this study as how closely that NTL sample
matches the distribution of phones in the TL train-
ing data. In addition to random sampling of data at
different phone counts (Exp. 1), we considered how
alignment is affected when samples of the NTL data
are most representative (closest to the TL), and least
representative (furthest from the TL).

We determined the representativeness of each
NTL sample with a measure known as f-idf [10].
Our NTL and TL data is composed of sets of .WAV
files and transcriptions corresponding roughly to ut-
terances. For each phone P, in an NTL or TL utter-
ance, we computed the normalized frequency of that
phone relative to that utterance (¢f = raw frequency
of Py in the utterance / total # of phones in the ut-
terance). We then computed how evenly distributed
that phone is within the sample (idf = log,(total # of
utterances / # of TL utterances containing P)). Intu-
itively, the product #f xidf then expresses how ‘im-
portant’ a given phone is within a particular sample,
balancing frequency with dispersedness.

Each utterance in a sample can then be expressed
as a vector of #f xidf values reflecting the phones
it contains. To compute the representativeness of
each NTL utterance, we computed the cosine sim-
ilarity between that utterance and all of the TL ut-
terances included in that experiment. The average
cosine similarity of an NTL sample then expresses
its representativeness relative to the TL data.

2.4. Pronunciation data

Kagqchikel and Uspanteko have very shallow ortho-
graphic systems, which makes it straightforward
to convert orthographic transcriptions to phonetic
form. Two custom grapheme-to-phone converters
were used to create pronunciation dictionaries for
each language, taking into account some allophonic
detail. In both languages, plain stops are aspirated
word finally, and vowel initial words undergo ini-
tial glottal stop insertion [1, 4, 6]. Glottalized stops
are contrastive: implosive /6/ varies phonetically
between [6 ? w], and /?/ is sometimes deleted. In
Kagqchikel, sonorants also devoice in coda position.
These patterns of allophony and variability were in-



cluded in the dictionary entries used for alignment.

Phonetically, the two languages differ mainly in
their vowel inventories (though Uspanteko also per-
mits a wider range of consonant clusters). Vowels
in Uspanteko include long and short /aeiou/, and
contrast for tone [2]. Vowels in Kaqchikel include
tense /aeiou/ and lax /oerou/, and do not contrast
for tone. In unstressed syllables, only short vow-
els (Uspanteko) and tense vowels (Kaqchikel) oc-
cur. In stressed syllables, there are parallel contrasts
which reflect the historical relatedness of these lan-
guages [3]: long vowels (Uspanteko) correspond to
tense vowels (Kaqchikel), and short vowels corre-
spond to lax vowels (e.g. [ﬁéxx]w['ﬁax] ‘ash’ and
[ﬁax]w[ﬁgx] ‘pine’). Based on these correspon-
dences, we formulated three mapping rules to con-
vert Uspanteko words (NTL) into pseudo-Kaqchikel
forms (TL): (i) the tonal contrast is ignored; (ii) in
stressed syllables, long and short vowels in Uspan-
teko are mapped to tense and lax vowels, respec-
tively; (iii) in unstressed syllables, short vowels in
Uspanteko are mapped to tense vowels.

3. RESULTS

We computed errors relative to our hand-corrected
standard for the onset boundaries of each phone, as
predicted by each model. The results were simi-
lar when using phone offsets instead, because phone
offsets are usually also the onset of the next phone.

3.1. Experiment 1: Sample size
3.1.1. Average error

Table 1 shows the average error size (in ms) with dif-
ferent sizes and proportions of TL and NTL training
data. Adding NTL data clearly improves alignment
of the TL, under at least some conditions. When
there are zero TL phones in the training data (first
column), there is a steady reduction in average er-
ror from 500 phones (215ms) all the way to 8000
phones (42ms) of NTL data. However, the positive
effect of adding NTL phones diminishes after about
3000-4000 total input phones (in any proportion of
NTL:TL). Lastly, NTL phones do not contribute as
much to alignment quality as TL phones. By com-
paring equivalent cells along the diagonal, the cells
at the top right are consistently lower than those at
the bottom left. This demonstrates that adding NTL
data leads to a smaller increase in alignment quality
than adding TL data to the training input.
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Table 1: Average error in onset boundary place-
ment (in ms) relative to gold-standard annotations,
for different amounts of NTL+TL training data,
averaged across 5 samples in each cell.

TL
NTL 0 500 1000 2000 4000 8000

0 190 118 39 32 31
500 215 116 60 37 33 31
1000 150 76 44 37 31 29
2000 72 59 37 32 31 28
4000 49 40 37 31 31 30
8000 42 35 35 32 29 27

3.1.2. Accuracy thresholds

Table 2 shows the percentage of alignments accurate
within two tolerances (error size <20ms, <30ms)
for different combinations of TL and NTL training
data. (For reference, inter-annotator agreement on
hand-aligned data is about 80% within a 20ms toler-
ance, [5, 11].) Some of the findings shown in Table
2 differ from what was suggested by average error
rates in Table 1. Here, the positive effect of adding
NTL phones levels out around 8000 total phones
rather than 4000, with accuracies of about 72% for a
<20ms error threshold, and 82% at <30ms.

Table 2: % accurate alignment relative to gold-
standard annotations at different tolerances (20ms,
30ms), for different amounts of NTL+TL training
data, averaged across 5 samples in each cell.

Tolerance < 20ms

TL
NTL 0 500 1000 2000 4000 8000
0 15.0% 27.5% 632% 683% 71.7%
500 13.7% 33.0% 49.7% 63.7% 682% 72.5%
1000 227% 45.5% 604% 621% T1.4% 73.3%
2000 442% 54.6% 62.4% 68.4% 70.8% 73.1%
4000 564% 64.4% 651% 702% 72.3% 73.9%
8000 624% 669% 672% T1.0% 72.4% 73.7%

Tolerance < 30ms
L 0 500 1000 2000 4000 8000
NTL
0 21.8% 38.6% 75.8% 79.5% 82.5%
500 18.8% 432% 622% 762% 80.1% 82.6%
1000 31.2% 57.7% 72.5% 76.1% 82.0% 83.8%
2000 57.0% 674% 762% 79.6% 81.3% 83.3%
4000 68.7% 159% 774% 81.1% 82.2% 83.2%
8000 73.4% 782% 18.7% 809% 82.7% 83.7%
3.2. Experiment 2: Representativeness

3.2.1. Average error

Table 3 shows the average alignment error (in ms)
for different combinations of TL and NTL data, as
the representativeness of NTL data varies. Cell val-
ues are differences in mean alignment error between
most and least representative samples: positive val-



ues indicate an advantage for models using /ess rep-
resentative NTL samples, while negative values in-
dicate an advantage for more representative samples.

The results suggest that sampling less representa-
tive NTL data yields a better model than sampling
more representative NTL data. However, this sam-
pling effect diminishes and (again) levels out for
models with at least 4000 total phones.

Table 3: Differences (MOST-LEAST representa-
tive) for average error in onset boundary place-
ment (in ms) relative to gold-standard annotations,
for different amounts of NTL+TL training data,
averaged across 5 samples in each cell.

TL
NTL 500 1000 2000 4000 8000
500 27 5 4 -2 -1
1000 47 17 8 2 -2
2000 18 -4 1 2
4000 12 7 0 -1 2
8000 2 3 1 1 0

3.2.2. Accuracy thresholds

Table 4 shows differences for the percentage of
alignments accurate within two tolerances (<20ms,
<30ms), when comparing models using more rep-
resentative NTL data to those using less represen-
tative NTL data. Here, negative values indicate an
advantage for models using less representative NTL
samples. Unlike the results based on average error
size, the effect of representativeness persists across
most combinations of TL and NTL data. Even at
16,000 total phones (8000 TL and 8000 NTL), using
less representative NTL data still provides at least a
~3.5% increase in accuracy across tolerances.

4. CONCLUSION

We have shown that combining two genetically-
similar languages as the input to model training can
improve the quality of forced alignment for at least
one of those languages, even with a rather small
amount of data. This has implications for work on
endangered languages: as long as a suitable amount
of NTL data is available, it can be leveraged to im-
prove the alignment of TL data. This could be useful
in any scenario where the amount of TL data is lim-
ited, e.g. the early stages of data collection, or even
cases when the TL is no longer spoken. In future
work we intend to explore whether this method can
be extended to languages which have similar seg-
mental phonologies, but which are not genetically
related (e.g. Kaqchikel and Quechua [17]).

Exp. 1 found diminishing returns for the addi-
tion of NTL data during model training. Our re-
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Table 4: Differences (MOST-LEAST representa-
tive) for % accurate alignment relative to gold-
standard annotations at different tolerances (20ms,
30ms), for different amounts of NTL+TL training
data, averaged across 5 samples in each cell.

Tolerance < 20ms

TL
NTL 500 1000 2000 4000 8000
500 0.70% 1.22% -6.06% -0.56% -1.79%
1000 -11.48% -4.54% -4.03% -497% -0.52%
2000 -11.68% -2.02% -4.71% -2.06% -5.04%
4000 -8.00% -538% -820% -4.68% -4.20%
8000 -1.55%  -7.14% -5.12% -6.32% -5.38%
Tolerance < 30ms
L 500 1000 2000 4000 8000
NTL
500 -0.24%  1.25% -5.06% -0.57% -1.10%
1000 -13.94% -5.51% -4.00% -3.14% -0.24%
2000 -12.33% -0.61% -3.43% -2.44% -2.94%
4000 -1.76%  -5.81% -535% -3.02% -2.60%
8000 -6.50% -548% -4.12% -4.05% -3.52%

sults suggest some cut-off points for the usefulness
of NTL data, which could provide ballpark figures
for the minimum amount of data needed to produce
usable forced alignment models (e.g. at least 8000
phones). Crucially, fairly good alignments are pro-
duced at these cut-off points, with levelled-off accu-
racy values of 72% for a tolerance of 20ms, and 82%
for 30ms. These values are comparable to models
trained on thousands of hours of recordings: for in-
stance, an MFA aligner trained on 1000 hours of En-
glish data [14] aligned the Phonsay corpus with 72%
accuracy within 25ms error. Still, the amount of
data needed to train a minimal working aligner may
be language-dependent, e.g. the EasyAlign aligner
needs different amounts of training data to produce
accurate models for French vs. Taiwan Min [7].

Exp. 2 found that the representativeness of NTL
data affects alignment quality: less representative
samples provide greater model improvement. We
speculate that less-representative NTL samples in-
crease the diversity of phones and phone sequences
in the training data, leading to greater balance in the
number of tokens of each phone/sequence, and thus
improving alignment. In future work we will inves-
tigate whether the alignment of some phones (e.g.
rare phones) benefits more from the addition of less
representative NTL data. More generally, these re-
sults suggest that researchers can improve the qual-
ity of alignment by carefully selecting the kind of
NTL data included during model training.'
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